Step of Proof: trans_imp_sp_trans_b
12,41
postcript
pdf
Inference at
*
2
I
of proof for Lemma
trans
imp
sp
trans
b
:
1.
T
: Type
2.
R
:
T
T
3.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
4.
a
:
T
5.
b
:
T
6.
c
:
T
7.
R
(
a
,
b
)
8.
R
(
b
,
a
)
9.
R
(
b
,
c
)
R
(
c
,
a
)
latex
by ((((D 0)
CollapseTHENM (D 8))
)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n
C
),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
8.
R
(
b
,
c
)
C1:
9.
R
(
c
,
a
)
C1:
R
(
b
,
a
)
C
.
Definitions
t
T
,
A
,
x
(
s1
,
s2
)
,
P
Q
,
False
,
Lemmas
not
wf
,
false
wf
origin